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Classic Cartesian staggered mesh schemes have a number of attractive properties.
They do not display spurious pressure modes and they have been shown to locally
conserve, mass, momentum, kinetic energy, and circulation to machine precision.
Recently, a number of generalizations of the staggered mesh approach have been
proposed for unstructured (triangular or tetrahedral) meshes. These unstructured
staggered mesh methods have been created to retain the attractive pressure aspects
and mass conservation properties of the classic Cartesian mesh method. This work
addresses the momentum, kinetic energy, and circulation conservation properties of
unstructured staggered mesh methods. It is shown that with certain choices of the
velocity interpolation, unstructured staggered mesh discretizations of the divergence
form of the Navier—Stokes equations can conserve kinetic energy and momentum
both locally and globally. In addition, it is shown that unstructured staggered mesh
discretizations of the rotational form of the Navier—Stokes equations can conserve ki-
netic energy and circulation both locally and globally. The analysis includes viscous
terms and a generalization of the concept of conservation in the presence of viscosity
to include a negative definite dissipation term in the kinetic energy equation. These
novel conserving unstructured staggered mesh schemes have not been previously an-
alyzed. Itis shown that they are first-order accurate on nonuniform two-dimensional
unstructured meshes and second-order accurate on uniform unstructured meshes.
Numerical confirmation of the conservation properties and the order of accuracy of
these unstructured staggered mesh methods is presentedoo Academic Press
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1. INTRODUCTION

Strictly speaking, a staggered mesh scheme is any numerical scheme where variabl
located at different points within the mesh. Many possible staggering schemes are pos:
However, in this work we are interested in generalizations of a particular staggering sch
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that dates originally to the work of Harlow and Welch [1]. They describe a scheme

regular Cartesian meshes where the pressure is located at cell centers but the veloc
distributed on the cell faces with horizontal velocity components prescribed at vertical fe
and vertical velocity components prescribed at horizontal faces. This particular stagge
scheme has been found to be especially attractive for simulations of incompressible

and is widely used for this class of flows. The important property for incompressible flo
is the fact that this scheme does not display spurious pressure modes. There is no red-
uncoupling of the pressure unknowns or a need for “stabilization” terms that damp pres
and velocity fluctuations.

Several properties beyond the ability to easily simulate incompressible flow make |
method attractive for simulations of high Reynolds number flows. The method is typice
very fast and uses minimal memory. In addition, it has been found that discretizations b:
on this staggering can conserve momentum, kinetic energy, and circulation [2]. Dil
numerical simulations of turbulence have been successfully performed using the Carte
staggered mesh discretization [3-5], and more recently the scheme has become pc
for Large Eddy Simulation (LES) in complex geometries [6]. Furthermore, it has be
demonstrated that local conservation of kinetic energy is particularly critical for large ec
simulations of turbulence [7], where it is observed that preserving the exact details of
small scale turbulent fluctuations is not nearly as important as preserving their ove
kinetic energy and rate of dissipation. In two-dimensional turbulence, it is the enstroj
that becomes the important cascaded variable, and so it is likely in simulations of t
dimensional (geophysical) turbulence that conservation of circulation (vorticity) will be
important property of the numerical method.

Most numerical methods that are known to conserve kinetic energy or circulation, s
as spectral methods or Cartesian staggered mesh schemes, require Cartesian mes
attention is restricted to methods that can be implemented on unstructured meshes ¢
complex geometries, the kinetic energy or circulation conservation properties are ven
strictive. Mimetic discretizations on unstructured meshes which appear to be closely rel
to finite element methods can be constructed to globally conserve vorticity or enstrop
kinetic energy [8]. Galerkin finite element methods are known to be kinetic energy ci
serving (globally) on unstructured meshes. Unfortunately, experience with finite eler
methods for the LES simulation of turbulence indicates that they can also be expen
in that context [9]. In addition, finite element methods guarantee glolyal conservation
of momentum and kinetic energy, the attractive local conservation properties often fo
with finite volume methods cannot be obtained. While finite volume methods do conse
mass, momentum, artdtal energy locally (usually by construction), in general, they d
not conserve kinetic energy or circulation. In addition, standard finite volume methods
often subject to pressure instabilities and slow convergence at low Mach numbers. How
unstructured versions of the Harlow and Welch staggered mesh method hold significan
tential for achieving local kinetic energy or vorticity conservation on unstructured mesk

The staggered mesh method of Harlow and Welch was generalized to unstructured
angular) meshes independently by Hatllal. [10] and by Nicolaides [11-13]. The works
of Nicolaides provide extensive mathematical analysis of the method. These “dual me
or “covolume” methods take explicit advantage of the fact that every unstructured tetrz
dral or triangular mesh (a Delaunay mesh) has an orthogonal or dual mesh associatec
it (a Voronoi tessellation). An example of an unstructured mesh and its dual are show
Fig. 1. The local mutual orthogonality of these meshes can be used to develop discretiz
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Mesh
Dual Mesh.

FIG. 1. Example of a two-dimensional unstructured triangular mesh and the associated Veronio dual m
The faces of the two meshes are always locally orthogonal.

operators that closely mimic their continuous counterparts. This allows a true inner proc
to be defined and important vector identities (sucKa§ x (e) = 0) to be maintained in
a discrete sense. Similar, “mimetic” schemes for distorted Cartesian meshes have rec
been proposed by Bertagnolio and Daube [14] and Hyman and Shashkov [15, 16].

It should be noted that while unstructured staggered mesh methods have numerot
tractive mathematical properties, high-order accuracy is currently not one of them. L
the original Harlow and Welch discretization, the methods tend to be first-order accul
on nonuniform meshes. The issue of creating higher order unstructured staggered |
schemes is not pursued herein. However, Moringttal. [17] have developed higher or-
der staggered mesh schemes for Cartesian staggered grids, and kfyaiaji8] have
reported progress in developing high-order staggered mesh schemes for distorted gt
lateral meshes. Calculations of fluid evolution using unstructured staggered mesh sch
are reported in Refs. [19-21].

This work will evaluate the conservation properties of two different unstructured stz
gered mesh schemes. For the sake of clarity and brevity the analysis will be restricted to
dimensions, but it will be clear throughout the analysis that there are no fundamental hur
to applying the analysis to three-dimensional discretizations. Section 2 looks at unstruct
staggered mesh discretizations of the rotational form of the Navier—Stokes equations.
rotational form is attractive because it maps well to the staggered mesh approach a
inexpensive to implement. The rotational form is shown to conserve circulation and kine
energy locally and globally. Section 3 looks at unstructured staggered mesh discretizal
of the divergence form of the Navier—Stokes equations. The method is shown to cons
momentum and kinetic energy locally and globally. Numerical confirmation of these cons
vation properties is presented in Section 4. The accuracy of these conserving staggered
discretizations is analyzed in Section 5, and a short discussion is presented in Sectior

2. ANALYSIS OF THE ROTATIONAL FORM

Unstructured staggered mesh methods have discretization operators that are ideally
to a representation of the Navier—Stokes equations that is based on the vorticity. The fol
ing form of the incompressible Navier—Stokes equations will be referred to est#tienal
form of the equations,

2_l:+(wxu)=—Vpd—VX(vw), 1)
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whereu is the velocity vectorg is the vorticity, p¢ = p + %u - U is the specific dynamic
pressure, and is the kinematic viscosity. This equation assumes that viscosity is constz
butitis otherwise equivalent to other forms of the incompressible Navier—Stokes equati
Variable viscosity can be still be represented in rotational form but the extra term (involv
second derivatives of viscosity) complicates the analysis unnecessarily. Despite the
that this form of the Navier—Stokes equations is not common in textbooks it can be ec
generalized to compressible flows and is a mathematically elegant way to view the equat
The convection term acts only perpendicularly to the velocityd x u) = 0], and the body
force is now explicitly decomposed into its dilatational and solenoidal parts. This partict
form of the Navier—Stokes equations is of interest because it appears to be inherently s
to the staggered mesh discretization. The classic staggered mesh method of Harlov
Welch can be rearranged to look like a discretization of Eq. (1).

2.1. Unstructured Discretization of the Rotational Form

Staggered mesh schemes, either structured or unstructured, are concerned with the
tion of the normal velocity component, at the faces of the mesh cells. In two dimension
the staggered mesh discretization of the rotational form of the normal momentum eque
at each cell face is

umtl—un 1

W AfT - E(wnlvnl+wnzvn2)vvf A= — ( Dgz— Dgl) At — (Vn2wn2— vnion1) Wk, (2)
whereW;, is the distance (or width) between neighboring cell circumcent&rss the
face areau is the normal velocity component as the faeg,is the vorticity at the mesh
nodes, andpd is the specific dynamic pressure at cell circumcenters. In two dimensic
the face ared, is really just a length (the distance between the face end points) time
unit depth into the plane. The convention which is assumed here is that the normal ve
points from cell c1 to cell c2, the tangential vector points from node nl to node n2,
the tangential vector is oriented 96ounterclockwise to the normal vector (see Fig. 2)
The orthogonality of the normal and tangential vectors can always be obtained if the
positions are located at the cell circumcenters. The methods discussed in this manu:
assume that the cells have a circumcenter. This is true of meshes that consist of collectic

N2 control volume

triangular sub-area

FIG. 2. Notation for a cell face and the face in the context of the larger mesh.
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triangles, rectangles, and symmetric trapezoids (and their three-dimensional counterp
but is not true of a mesh composed of arbitrary quadrilaterals (or hexahedra). Extensic
the staggered mesh method to arbitrary quadrilaterals is discussed in Ref. [15]. Arbit
guadrilaterals force some of the discretization operators to be implicit, which complica
the analysis. While the following proofs require the presence of cell circumcenters, they
not require that the cell circumcenters be located within the cell itself or that the mest
a Delaunay tessellation. Highly distorted grids can impact the accuracy of the unstructt
staggered mesh method as discussed in [16] but do not affect its conservation properties
test cases in Section 4 use meshes in which a significant fraction of the cell circumcer
lie outside the respective cell.

In this notation, the velocity component normal to the cell face, iand the tangential
velocity component at the facedsThese local velocity components should not be confuse
with the x and'y components of the velocity vector (which are given gy and uy).
The convective term is actually calculated at the nodes and then averaged to the fac
two dimensions, the vorticity is assumed to point out of the two-dimensional plane. |
convenience, we have represented the entire gradient term using a dynamic presur
Boundary faces are discretized in exactly the same manner, with the external cell
located infinitesimally close to the boundary face. The time level has been dropped f
all but the time derivative term for simplicity. However, the time levels are not necessal
arbitrary and some implications of various time level choices are discussed in the text.

If Eq. (2) is divided byW; A¢, the discretization can be viewed as an unstructured fini
difference approximation to the normal momentum equation. However, it can also be in
preted as a control volume approximation on a rectangular control volume with Wdth
and height?s. Note that the control volumes overlap and their total area will be exactly twi
the area of the entire domain. This can be seen by the fact that each control volume rect
is exactly twice as big as the two subtriangles associated with each face (see Fig. 2).
doubling of the total control volume area makes sense since the method solves for only
the velocity components. While the use of overlapping control volumes is perhaps troub
at first, it will be clear upon completion of the text that this is indeed a legitimate approa
If a regular Cartesian mesh is used it can be shown that this discretization is equivale
the Harlow and Welch staggered mesh scheme. The accuracy of a similar staggered
scheme (with a different convection term) was analyzed by Nicolaides [11] and showi
be second-order accurate on uniform unstructured two-dimensional meshes.

Analysis of the method is made somewhat easier if the discrete equations are writte
operator form,

u”+1 —_u"
W Af————— — WAt AVG (wnvn) = —As GRAD (pd) — Wi CURL (vhwn),  (3)

At

whereAVG is the averaging operatdBRAD is the gradient operator, af@JRL is the

curl operator. These operators are nonsquare, sparse matrices. The nonzero entries
difference operator&RAD andCURL are either plus or minus one. The gradient and cul
operators have a similar function to their continuous counterparts but differ slightly in tl
these matrices have been stripped of their geometric information such as heights and wi
It can be shown [22] thatQURL)" GRAD (e) = 0, which is the analog 0¥ x V(e) = 0.

We will not use this fact in what follows but it highlights an important point: the stagger
mesh operators have many properties that mimic their continuous counterparts [23]. V
will be used in the conservation proofs will be discrete integration by parts analogs
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these discrete operators. Discrete integration by parts will allow us to develop proof:
conservation that proceed very much like their continuous counterparts.

2.2. Conservation of Kinetic Energy: Rotational Form

For the continuous Navier—Stokes equations, kinetic energy conservation is derive!
taking a dot product of the momentum equation with the velocity vector and using integra
by parts. If we continue to consider an incompressible fluid then kinetic energy conserva
is given by the equation,

1y.
a(zgjtlj)+v.{u<;u.u)]=_v-(pu)+V~(vuxw)—vw~w, (4)

Where%u - uisthe specific kinetic energy of the fluid. Strictly speaking, conservation appli
only in the inviscid limit of zero viscosity. In the presence of viscosity the last term is
negative semidefinite sink term that causes the total kinetic energy to decay monotoni
in the absence of external forces. The discrete system will actually mimic this more gen
notion of kinetic energy conservation. It will satisfy a discrete equation analogous to
continuous equation above, where total kinetic energy decreases due to a single dissiy
term which is equal to the product of the discrete enstrophy and viscosity.

The primary difficulty of analyzing the conservation properties of staggered mesh me
ods is the fact that only the normal component of the velocity vector at the mesh fa
is discretized. The choice of velocity interpolation is then intimately associated with h
velocity-dependent quantities like momentum and kinetic energy are defined. During
course of the proof we must also determine how best these quantities should be defin

To show discrete kinetic energy conservation we multiply each equation for the nori
velocity at the face by the half-time normal velocit{; /2, at the face and then sum over the
faces. Note that in the discrete derivation there is no dot product, only the normal momer
equation and normal velocity are involved. Discrete conservation of kinetic energy will
derived by showing that a discrete form of integration by parts can be applied to each 1
of the normal momentum equation. Then it will be shown that this portion of the kine
energy (that due téu2 summed over all cell faces) is an approximation for the full kineti
energy within each mesh cell.

If the summation is performed over all the faces of a single control volume then
following proof is a statement of local kinetic energy conservation. It states that the cha
in kinetic energy within the control volume is only a result of fluxes through the contr
volume surfaces and viscous dissipation. If the summation is performed over all the fac
a mesh (including the boundary faces) then the interior fluxes cancel out and the resu
proof is a statement of global conservation. Global conservation states that the chan
total kientic energy is due only to fluxes through the boundary of the domain and the t
viscous dissipation inside the domain.

Discrete conservation starts with the following equation:

faces +1_yn faces

un
Z U2 A — Z U 2We As AVG (wnvn)

faces faces

=— > u™2AGRAD(pg) — > u""2W CURL (vywn). (5)
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The goal will be to move"+/2 within each of the operators (including the time derivative
in order to derive a discrete analog of Eq. (4). Each term in this equation is analy:
below.

2.2.1. Time derivative. If we require that"*%2 = I (u"! +u"), then the time deriva-
tive term can be simplified as follows:

faces +1_ 0 faces 1 un+t _gn
W A u”+1/27 = Wi A= (U™ 4 u
E k As Al E kA ( + ) AL
faces n+1 1 n
UU — (5uUu

Remember that the wid; is the distance between the neighboring two cell circumcente
(Fig. 2). On boundary facas is the distance from the interior cell circumcenter to the fac
midpoint. The width can be decomposed into two parts, each representing the distance
the face midpoint to one of the cell circumcentafé;= W + W2 On boundary faces
the second part is zero. With this notation, the sum over faces can be recast as sumn
over the cells,

cell
faces 1 n+1 1 n cells faces n+1 1 n
(uu) = (5uu) ( uu) = (Fuu)

=3 a i e S B L e

(7)

where the term in square brackets can be identified as the change in discrete kinetic el
within the cell. The discrete kinetic energy in a cell is therefore defined by the expressi

K=_— WEA: Zuu, 8
v 2 wea(Gu) ®

whereV; isthe volume ofthe cell. Note that the summation involves only the “kinetic energ
associated with the normal velocity components. Also note that the summation is effecti
a volume weighted average but that the weights add up to 2, so the weights account fo
fact that only part of the total kinetic energy at each face is being averaged. It is show
Section 5.2 that the average described above is a first-order accurate approximation fc
kinetic energy in an arbitrary two-dimensional cell.

With the discrete kinetic energy defined in this way the time derivative term for tl
discrete kinetic energy equation can be written as

cells KN+l _ KN

=Y Ve (©)
This equation is valid for a collection of cells or an individual mesh cell. Note that f
unsteady flows kinetic energy conservation requires using a standard time derivative
proximation (u"*! — u")/At and the midpoint rule for the half-time velocity’t'/? =
Z(U" + u"t). Settingu™¥/2 = u" in the derivation or using a second-order backward dif
ference for the time derivative results in a first-order, but not necessarily positive, defil
approximation for the kinetic energy at the next time level.
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2.2.2. Convective term.Here we will attempt to construct a discrete version of thi
convective term{w x u) - n, which gives no contribution to the discrete kinetic energ
equation since this term does not contribute in the continuous kinetic energy equation

The convective term in the kinetic energy is given by

faces faces

1
D UTHEWAAVG (nvn) = D UM AWM A (@nvn + @navia), (10)

wherewy, is the vorticity at the node. The component of velocity that is used is the comy
nent of velocity oriented 90counterclockwise to the face normal vector. This is precisel
written as

faces

1
= Z un+1/2\Nf Afi[nf X (wn1Vn1 + wn2Vn2)] - Z, (11)

wherez is the unit vector pointing out of the two-dimensional plane. The summation abc
can be recast as a summation over mesh nodes:

node
nodes faces

1
= oz [ |>] u“+1/2vvaf§nf X Vi | . (12)

The cross productterm in large brackets is the term of critical interest. If it is desired that
term be identically zero for arbitrary flows then the term in square brackets must be pro
tional to the velocity at the nodésy,). This can be achieved by defining the node velocit
as

Pode
1 faces

1
Va=—— Un+l/2VVfAf§nf» (13)
n

whereA, is the area associated with each node (see Fig. 1). Section 5.3 shows that tl
a first-order approximation for the velocity on uniform meshes. However, on nonunifo
meshes it is found that this is only a zeroth-order approximation for the velocity at
nodes. So while this discretization conserves kinetic energy, it has sacrificed converg
to the Navier—Stokes equations. While the error is shown to be small in Section 5.5,
nonetheless disconcerting. A modified discretization of the convective term is presel
below which leads to a first-order accurate velocity at the nodes.

2.2.3. Modified convective termThe analysis in Section 5.3 which shows that the
velocity defined by Eq. (13) is zeroth-order accurate for arbitrary meshes also shows
to improve the accuracy to first order. The first-order expression for the node velocit
similar to Eq. (13).

Pode
1 aces

vy = ™ Z A Y2Wez x (X — Xn), (14)

wherex; is the face position midway between the two neighboring cell circumcenterg, an
is the component of velocity normal to the face and oriented in a counterclockwise direc
with respect to the node. For uniform meshgsgqualsxs, S0z x (X{ —X,) = i%Afnf and
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Eq. (13) equals Eq. (14). Working backward from Eq. (14), this implies that we would li
Eq. (12) to have the form

node
nodes faces

Z wnZ - Z O Y2Wez x (X — Xn) | X Vi | (15)

Recasting this as a summation over faces gives

faces
= Z l’:anrl/ZVVf[{Z X (X{ = Xn1)} X Vnaony — {Z X (X{ — Xn2)} X Vnown2] - Z, (16)

which simplifies to

faces

= > UMPWOG — Xnn) - Viaon — O — Xn2) - Vnownal. (17)

This implies that the rotational form of the convection t&rnx u) - n should be discretized
as

= WE[(Xf — Xn1) - Vnion1 — (Xf — Xn2) - Vnawn2], (18)

rather than using Eq. (11). Note that Eq. (10) still holds but we now have a new definition
the tangential velocity,. Section 5.3 shows that Eq. (18) is still a first-order approximatio
for the convection term.

Note that conservation of kinetic energy requires that the velocity in the convection te
should be evaluated at the half time level, but there are no restrictions on the time leve
the vorticity.

2.2.4. Gradient term. This Section will show how th&RAD operator satisfies a
discrete version of the chain rule analogousit&V¢ = V - (u¢) — ¢ (V - u). The gradient
term in the discrete energy equation actually contains two terms, a pressure contribt
and a kinetic energy contribution. The kinetic energy portion will eventually become t
convection of kinetic energy. The pressure portion becomes the traditional pressure v
term. If we ignore the initial minus sign for now, the gradient term in the kinetic energy c
be rearranged as follows:

faces faces

> UM AGRAD(p) = u™2A¢((ph — pf) — (- pf)]. (19)

Note that the normal velocity component has an orientation (from C1 to C2), and
dynamic pressure at the cell facgshas been introduced. This latter step is not necessa
and the proof can proceed by simply remembering that at boundary faces of the domail
outer cell (C2) position is the same as the face positiopfse= pf). However, the current
construction makes the chain rule analogy mentioned above more obvious. The summ,
over faces can now be rewritten as a summation over cells,

ell
cells faces cells faces cells faces

_ Z Z a2 A (pf Z Z plam2 A — Z pd Z a2a¢ | (20)
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where the normal velocityi is defined to be the normal component of velocity that point
outwardrelative to the cell in question (rather than from C1 to C2). The term in sque
brackets is the discrete version of the velocity divergence. This derivation shows the
operator notation we can write

cell
faces

DIV (uApf) = Y uAGRAD(pf) + pdDIV (UAY), (21)

whereDIV = GRAD' is the discrete divergence operator. The summation over cell fac
is required in the discrete version, because the discrete operators do not operate on \
guantities, the vector nature of the continuous analog is implicitly obtained by summa
over the components oriented in different directions.

If the solution method satisfies the discrete continuity equabdvi,(u A) = 0, then the
gradient term in the kinetic energy equation becomes

cells faces cells faces cells faces (

— Z Z pd n+l/2A Z Z pfu"H/zAf + Z Z

which is a pressure work term and a kinetic energy convection term. Note that when
summation occurs over many cells the contributions from faces with two cells (inter
faces) cancel out because the outward pointing vel@gity’? is equal and opposite for the
two cells. Only boundary faces (with one cell contribution) survive, so this summation ¢
be further simplified to

) n+1/2 Af, (22)

boundary boundary
faces faces
Z pfun+l/2A + Z ( > n+1/2Af’ (23)

whereli"+1/2 always points out of the domain. This indicates that the gradient term neitl
creates nor destroys discrete kinetic energy; it only moves it around. The same is true i
continuous case.

2.2.5. Viscous term.This Section will show that th€ URL operator also satisfies a
discrete version of the chain rule for differentiation. It is analogoustio (V x vw) =
V. (U x vw) —vw - (V x U). The viscous term in the kinetic energy equation is

faces faces

— > uMY2W CURL (vhwn) = D U™ Y2 W (vnawns — vngwn2). (24)

This expression can be converted into a summation over mesh nodes,

node
nodes faces

—o 3 ven Y 0T, (25)

wherel is the velocity component normal to the face and pointing counterclockwise w
respect to the node in question. If a node is in the interior of the domain, then the summe
over node faces is a discrete approximation for the vorticity at the node (times the node a
On boundary nodes, the discrete vorticity must be completed by integrating the velo
around the boundary faces connected to the boundary node. Define the vorticity at a
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using a discrete version of Stokes theorem,

node
faces

" 1 1
ofP A = Z 20 + Uy, - <tbf12 A1 + tbfZE Abf2>, (26)

wheret is the tangential vector on the boundary faces (oriented counterclockwise). -
last term is necessary only for boundary nodes, and the normal vector is assumed to |
outward at boundary faces. Then the viscous term becomes

boundary
nodes nodes 1 1
== vonop ™A+ Y vnonln - <tbf1§Abfl + tbfZEAbf2>~ (27)

The second term can be converted to a summation over boundary faces:

boundary faces
nodes faces nodes

=— Z Vn®n a)nH/zA + Z A tf Z VnwnUp. (28)

The first term is an approximation for dissipation in the domain. The second term is
approximation forV - (vu x w) in the domain. The approximation farx » at the faces
is the same as that used for the convective term earlier. These terms correspond direc
what is found in the viscous terms of the continuous kinetic energy equation (Eg. (4)).

Note that the dissipation is strictly negative definite only if the vorticity in the diffusio
term is evaluated implicitly witho, = »+1/2. This is often advisable for stability reasons
anyway.

2.2.6. Summary. It has been shown that in two dimensions an unstructured stagge
mesh discretization of the rotational form of the Navier—Stokes equations can satisfy
following equation:

cells l%ound
Kn+1 Kn aces
n+1 2
d Vet ) 12 7
bound bound faces
faces faces nodes nodes

Z prn+l/2Af+ Z A tf Z VnwnUn — Z Anvna)nw2+l/2, (29)

where the discrete kinetic energy is given by

fgggs
1 1
S E V\IfCAf(—uu). (30)
Ve 2

Thisis adiscrete analog of the continuous kinetic energy transport equation. Itis conserv.
in the absence of viscosity and purely dissipative in the presence of viscosity, with
artificial dissipation.

One subtle assumption in the derivation was in the form of the convective term its
The convective term was evaluated by constructing u at the nodes and averaging that
result to the faces. Other possibilities, such as averaging the vorticity and velocity to
faces first and then taking the cross product, have not been evaluated.
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It is interesting to note that the definition of the discrete vorticity defines a new opera
ROT (The notation ROT is borrowed from Ref. [8], which uses it in a similar context.):

node
faces

wnAn= Y _ 0W +B.Cs=ROT(UW)+B.Cs (31)

ltturns outthaROT = CURL T, so the rotational form of the viscous term in the momentur
equation is a symmetric positive semidefinite operator. This makes it relatively easy to in
via iterative methods and suitable for implicit solution.

2.3. Conservation of Vorticity: Rotational Form

For the continuous Navier—Stokes equations, vorticity conservation is derived by tal
the curl of the momentum equation. If we continue to consider an incompressible fluid t
vorticity evolution is given by the equation

d
a_cf_i_V)((a)xu):—VXVX(Uw), (32)
which can also be written as
0
a*(f + V- (0u) = w- VU + VZ(vw), (33)

wherew is the vorticity. In two dimensions the first term on the right-hand side of Eq. (3
is zero and vorticity is a conserved variable. In an inviscid incompressible two-dimensic
flow all the moments of vorticity are also conserved quantities. In three dimensions, Eq. |
is the more useful viewpoint and it indicates that in three dimensions the circulation (inte
of velocity around a closed loop) is a conserved quantity. However, we continue to fo
on the two-dimensional case in this section.

To show discrete vorticity conservation we use a discrete curl operation, specific
the ROT operation defined previously. This is equivalent to a counterclockwise line in
gral around the faces of the dual control volume surrounding a node. This is specific
performed by dividing the momentum equation by the face area (so it becomes an app
mation for the momentum equation integrated along the face length), multiplyird. lify
the face normal points clockwise with respect to the node in question, and finally sumn
over all the faces touching a specific node. The result is a proof of local vorticity cons
vation. Global conservation is then shown by proving that the fluxes at neighboring n:
control volumes cancel out everywhere in the interior of the domain, leaving only bound
contributions. Nicolaides shows an alternative method of proving vorticity conservat
in Ref. [22]. Discrete conservation of vorticity at a single node starts with the followir
equation,

node node
faces un+1 —yn faces
DW= D WAVG (@nvn)
node node
faces faces
=—> GRAD(p{) — > (Wi/A) CURL (vpoon), (34)

where the normal vector at each face has been chosen to pointin a direction counterclocl
with respect to the node in question. The goal is to recast this equation into a discrete ar
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of the continuous vorticity transport equation given by Eq. (33). For the time being it w
be assumed that the node or nodes in question are in the interior of the domain. Boun
nodes will be treated in Section 2.3.2.

2.3.1. Local vorticity conservation.If the node is an interior node then the sum ove
all node faces represents a closed line integral around the node, and the time deriv
becomes an approximation for the change in vorticity at the node times the node area:

node

faces n+ n n+1 n
u u w —w
= A" n. (35)

1_
> W
At At
The convection term can be expanded as follows,

node node
faces faces

Z W AVG (vpwn) = Z (VVf/Af)[(X;k — Xno) * Vno@wno — (X? — Xni) - Vniwni]v (36)

where node n0 is the node over which summation is occurring and the face normal ve
is assumed to point counterclockwise with respect to node n0. The node ni is a neighbc
node to N0 connected by the face in question. This can be rewritten in the simpler formn

node
faces

= Z VVfE[UanCUnO + Ufnia)ni]a (37)

wherewy, is the velocity along the line pointing from the face to the node and outwat
Each face contribution represents an approximation for the flux of vorticity into the nc
dual control volume (Voronoi cell). For uniform meshes, the velocity component is exac
perpendicular to the dual control volume faces. For nonuniform meshes the velocity is
exactly perpendicular, but the two tangential velocity components nearly cancel and
approximation is still a first-order approximation for the normal flux at the face.

The curl of a gradient is zero for continuous differential operators. The same is also
of the discrete unstructured staggered mesh operators, so the discrete curl operatiol
eliminates the pressure term in this discrete vorticity equation:

node node
faces faces
~ > GRAD(p{) = > (p&y— pi) = 0. (38)

The cancellation occurs only if the faces completely surround the node, so this is not
for boundary nodes unless boundary conditions are introduced.
Finally, the viscous term becomes

node
faces

— > CURL (vwn)We/ Ar = —ROT[(W/ Ar) CURL (vrwn)]

node
faces

= Z (Vniwni — vnowno) W/ Ay, (39)

which is a symmetric, negative semidefinite, conservation diffusion term.
The final equation becomes

node node

ol — o faces 1 faces
AnT + Z <(2{Unf0wn0+ vnfiwni}) = Z(Vniwni — vnowno) Wi/ Ay, (40)
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where the convection velocity at each face is giverwRy= (Xf — Xni) - Vni2/ A;. Note
that Eg. (40) can be interpreted as a control volume discretization of the vorticity equa
integrated over the dual mesh control volumes (Moronoi cells) surrounding each node.

2.3.2. Global vorticity conservation.Global conservation is a direct consequence ¢
the fact that the convective and diffusive vorticity fluxes at interior faces are equal ¢
opposite for the two nodes touching each face. Consequently, the contributions fron
interior faces cancel out.

However, to rigorously account for all the vorticity in the domain it is necessary
include the vorticity contributions from boundary nodes and their associated dual con
volumes. In order to account correctly for the vorticity at boundary nodes, the dual con
volumes must be closed by connecting the centers of the two boundary faces touc
each boundary node. If boundary conditions are used to define appropriate approxima
to the momentum equation along this new dual control volume face, then the analysi
Section 2.3.1 above remains valid.

When global conservation is analyzed by summing over the area weighted vorti
from all nodes in the domain, including boundary nodes, the fluxes from the new d
control volume faces at the boundaries do not cancel. The result is that the net chan
total vorticity is due to the vorticity fluxes through these dual control volume faces at 1
boundaries.

3. ANALYSIS OF THE DIVERGENCE FORM

The next discretization that will be considered is based on the well known diverge
form of the Navier—Stokes equations:

%Jrv-(uu)=—Vp+v.v(Vu+VuT). (41)
Discretizations based on the divergence form of the equations are of interest because
are expected to be able to discretely conserve linear momentum. Note that conserv
of momentum is by no means guaranteed by using this form, because the staggered
methods update only the normal velocity components at cell faces; tangential velo
components are interpolated. The primary disadvantage of the divergence form is th
the context of unstructured staggered mesh methods the divergence form requires
computational and memory overhead.

3.1. Unstructured Discretization of the Divergence Form

At interior faces the orientation of the normal is chosen to point from cell C1 to cell C
at boundary faces the normal vector is assumed to point out of the domain. The dis
equation for the evolution of the normal velocity component is given by

ynt+l _ yn
Wi Ay A (WECer +WEsCeo) Ar = — (P2 — Per) Ar + s - (WEyder + WEydeo) Ay,
(42)
wherec, = X socellfaces,. 6 A is a conservative discretization of the convection term evalt

ated in each celt, = v—lc soceltfaces, gy 4 vuT) - Ay Ar is a conservative discretization of the
diffusion term evaluated in each cell; is the volume of each cell (which is really an arec
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times unit depth), and/. is the distance between the face circumcenter and the cell circu
center. Remember that=u - n; is the normal velocity at each cell face aing the normal
velocity component that points out of the cell. This discretization continues to assume
the mesh cells have a unique circumcenter, so that the face normal continues to point dir
away from one cell center and directly toward another cell center. The following analy
will indicate that specific interpolations for the face velocity, and velocity gradient at
the cell facesVu, are necessary in order to conserve discrete kinetic energy.

3.2. Conservation of Kinetic Energy: Divergence Form

The proof of discrete kinetic energy conservation of the divergence form begins |
like the proof for the rotational form. Each equation for the normal velocity at the face
multiplied by the half-time normal velocity™+1/2, and then summed over the faces. Discret
conservation of kinetic energy is derived by showing that a discrete form of integration
parts can be applied to each term of the normal momentum equation. Then it is shown
this portion of the kinetic energy (that due to the normal velocity summed over all cell fac
is an approximation for the full kinetic energy within each mesh cell.

Discrete kinetic energy conservation of the divergence form starts with the followi
equation:

faces faces

Z U2\ Af _|_ Z u"t/2n, Wé;lccl + Wczccz) Ay

faces faces

==Y uY2AGRAD(po) + Y Ut 2ng - (WEyder + WhOe2) A (43)

The time derivative remains the same as in the standard rotational discretiza
(Section 2.2.1) and will not be reevaluated. The pressure gradient term has also bee
alyzed in the context of the standard rotational discretization (Section 2.2.4); the ©
difference is that in this context the pressure gradient term contains only the pressure
the dynamic pressure. The following analysis will therefore focus on the convection ¢
diffusion terms.

3.2.1. Convection term.The convection term can be rewritten as a summation ov
cells,

faces cells faces cells

D (W W) A= 3 WA = D Ve (4)

whereu; = X yocell facesn+1/2n\WE A; is an approximation for the velocity vector in the
cells. Section 5.4 proves that this is a first-order approximation for the velocity vector.
Expanding the convection vectay,it is found that Eq. (44) becomes

cell mtenor boundary
cells faces faces faces

= Zuc Z ut0 A = Z (UZ — Ug) - ur(uAy) + Z uz; - ur(0A). (45)

If the face velocityus at interior faces is required to be a simple average;ofrom the
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neighboring cells then

mterlor boundary
faces faces

= ) (U —uip)- (ucl+ucz)(uAf)+ D> ud - urOA) (46)
interior boundary

faces faces

1 1 .
> Gl - wwm Y v [{u- Jua+ jun]em. @

This can be converted back into a summation over cells which then disappears due t
continuity constraint,

cells boundary boundary
ceIIs faces faces faces

—Z D> uA+ >y |:Uf c]_](UAf) > [; C1U:|(UAf) (48)

whereug = 2u;—uf; is an extrapolated velocity at the boundary faces, resulting in a seco
order approximation for the kinetic energy at the boundary faces. The result indicates
kinetic energy fluxes cancel out on the interior faces, and the only net convection of kin
energy occurs through the boundaries.

3.2.2. Diffusive term. The diffusive term can also be written as a summation over cell

faces cells faces cells

S U200 (Wyder + Whade) Ar = S e 3 UM 20 WEA = S deuzVe. (49)

For simplicity we assume constant viscosity and incompressible flow. Then expanding
diffusion vectord, it is found that this expression becomes,

cell boundary
cells faces faces faces

=> u- Zquf > wg —ugy) - {v} A+ Y [ugl- { }Af, (50)
whereuy, equals the face velocity on boundary faces. This is equivalent to

boundary

faces faces
= _Z qufvvf + D> ur- {v] Ay. (51)

The first term is a discrete approximation for the dissipation rate. If the velocity gradien
the faces is evaluated using then the dissipation is a negative semidefinite quantity. Tk
second term is the viscous work term at the boundaries of the domain.

3.2.3. Summary. It has been shown that for constant viscosity, the two-dimensior
divergence form of the unstructured staggered mesh scheme satisfies the following dis
kinetic energy equation,

boundary
cells KN+l _ gn faces

dDVemr—rt+ Y [; U ](uAf)

boundary boundary
faces faces cells

Z pf0n+l/2Af+ z |: :|Af ZVC{;‘C, (52)
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where the discrete kinetic energy is given by

1 fgggs 1
K=Y WA Zuu), 53
v 2w Gu) (53)
and the discrete dissipation is given by

cell
1 fazc'fs auz  du

=\ an an

AWE. 54
Ve W (54)

The construction of the discrete kinetic energy evolution equation required that «
velocity and face velocity interpolations were based on

cell
1 faces

ug = — > U2 WEA, (55)

which is a first-order accurate approximation of the cell velocity for arbitrary two-dime
sional meshes.

3.3. Conservation of Momentum: Divergence Form

For standard control volume discretizations, momentum conservation is a straightforw
consequence of writing the equations in divergence form. However, a proof of conserva
of momentum is far less obvious for staggered mesh numerical schemes on unstruc
meshes. The inherent difficulty is due to the fact that the velocity vector is not a uniqu
defined quantity in such methods. Part of the proof of momentum conservation will be
derive how the velocity vector should best be defined.

To show discrete momentum conservation we multiply each equation for the nori
velocity at the face by the face normal vector, and sum over the faces. Initially, this app
to be an incomplete procedure since only a portion of the momentum at each face is b
analyzed. However, it will be shown that this can be reinterpreted as evolution equatior
the velocity vector in each cell, and this evolution equation is conservative.

If the summation is performed over all the faces of a single control volume then 1
following proof is a statement of local momentum conservation. It states that the chang
momentum within the control volume is only a result of fluxes through the control volun
surfaces. If the summation is performed over all the faces in a mesh (including the boun
faces) then the interior fluxes cancel out and the resulting proof is a statement of gl
conservation. Global conservation states that the change in momentum is due only to fl
through the boundary of the domain.

Discrete momentum conservation of the divergence form starts with the followi
equation:

faces n faces
> e i > neng - (WECer + WEaCeo) Ar
faces faces
— f f
=— nfA;GRAD(pc) + Y iy - (WE der + WEydeo) Ar. (56)

The goal will be to recast this equation as an equation for the cell velocity vector. Criti
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to this transformation is the definition of the cell velocity vector in terms of the face norn
velocity components. Each term in this equation is evaluated below.

3.3.1. Time derivative. Remember that the wid¥ is the distance between the neigh-
boring two cell circumcenters (Fig. 2). On boundary fadék,is the distance from the
interior cell circumcenter to the face circumcenter. The width can be decomposed into
parts, each representing the distance from the face circumcenter to one of the cell cir
centersW; = Wt + W2, On boundary faces the second part is zero. With this notatic
the sum over faces can be recast as summation over the cells,

faces un faces

nfun-ﬁ-l _ nfun
ZVVfAfnf —Z WC1+WC2)AT

$ o

where the termin square brackets can be identified as the change in the velocity vector w
the cell. The velocity vector in a cell is therefore defined by the first-order approximatic

cell
faces

1 C
e = > WEANu, (58)

whereV, is the volume of the cell. With the cell velocity vector defined in this way, th
time derivative term can be written as

" ¢ (59)

This equation is valid for a collection of cells or an individual mesh cell.

3.3.2. Convection term.The convection term can be rewritten as a summation ov
cells:

cell
faces cells faces cells cells

D neng - (WECer + WECe2) Ar =D Ce [ D ninWEA | =D e Ve =) cVe.

(60)

The term in brackets is equal to the identity tensotimes the cell volume. This is a
known geometric identity, but the user can prove it using the basic techniques describ
Section 5. We can now expand the convection term using its definition,

cel boundary
cells faces faces

:ZZUfGAf: Z us0 A (61)

There are two contributions from each interior face, and they exactly cancel out{issce
equal and opposite for the two contributions. The remaining term is the flux of moment
into the domain, across the boundary faces.
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3.3.3. Pressure gradienttermThe gradientterminthe kinetic energy can be rearrange
as

faces faces cells fg‘é'és
~ D NAGRAD(P) = =) MAi(Pez— Pet) = ) Pe ) Ars
boundary boundary
faces faces
> pelitAr=— D pificA, (62)

wherefy; is the normal vector pointing out of the cell, or in the case of boundary faces—
of the domain.

3.3.4. Diffusion term. The diffusion term behaves very similarly to convection,

cell
faces cells faces cells cells

Z n{Ns - WCld01 + Wczdcz Af Z de - Z nfan(f:Af = Z de-1Ve = Z d.V,

(63)

where the bracketed term can be replaced by the identity matrix for two-dimensional mes
Expanding the diffusion vectod, it is found that

cell boundary
cells faces faces
§ E v(Vu+ vul - AicAr = § v(Vu 4 VuT); - A Ar. (64)

Again, there are two contributions from each interior face, and they exactly cancel «
sincefi; is equal and opposite for the two contributions, and all other quantities are identi
The remaining term is the viscous flux of momentum into the domain, across the bounc
faces.

Note that the rotational form of the viscous term also conserves momentum. The rotati
formis

face node
faces faces nodes nodes faces

- Z ntWs CURL (vhwn) = Z Ny W Z Un@on = Z VnWn Z AW, (65)

On interior nodes the last summation is zero. On boundary nodes the summation over
faces is simply the difference between the neighboring two boundary face circumcen
SO we obtain

boundary boundary face
nodes faces nodes

= Z vnon (X5 — X5°) = Z x<C Z Vn@n. (66)

The summation over face nodes is a discrete approximation for the normal componel
the diffusive term integrated over each boundary face. The entire summation is a f
order approximation for the total diffusion of velocity within the domain. While this is nc
the classic divergence form of the diffusion term this representation is equally valid
conservative.

3.3.5. Summary. It has been shown that the divergence form of the unstructured st:
gered mesh scheme satisfies the following first-order conservative equation for the evolt
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of the cell velocities (or momentum),

boundary boundary boundary
faces faces faces

_un R R
€+ Z Wi A= — Z prfAs As+ Z v(Vu+vus - A A, (67)

cells n+1
YoVt

where the cell velocity is given by the first-order approximation

cell
faces

1 C
e = > WEAm. (68)

This indicates that the unstructured staggered mesh discretization of the divergence fol
the Navier—Stokes equations is fully equivalent to a control volume method for the velo
vector located at cell centers.

4. NUMERICAL TESTS OF CONSERVATION

In order to test the conservation properties of these schemes a problem was chose
has zero mass flux at the boundaries, but is inherently unsteady. The problem involy
roughly circular patch of constant vorticity (magnitude of 2)docated in the bottom left
guadrant of a square domain. The domain boundaries are slip walls. The vortex pat
10 cm in diameter and the square domain is 100 cm. The vortex rotates counterclock
with a maximum speed of 6 cm/s, and its center moves counterclockwise around the dol
at a speed of roughly 0.5 cm/s. A total of 6200 triangles are used to spatially discretize
domain. The initial streamlines are shown in Fig. 3a. The mesh and the initial vortex pe
are shown in Fig. 3b.

4.1. Conservation of Kinetic Energy

The discrete kinetic energy within each mesh cell was calculated at every time step u
Eq. (8). The average discrete kinetic energy was then evaluated by calculating the vol
weighted sum over all the cell kinetic energies,diRge= y--— SV K. Since there
is no flow across the domain boundaries, this quantity should be constant in the abs
of viscosity, and monotonically decreasing in the presence of viscosity with a decay
proportional to the viscosity times the enstrophy.

In numerical tests of the vortex motion in the absence of viscosity, the average disc
kinetic remained constant to six significant digits after 200 time steps (10 s). This is abot
constant as can be expected given the tolerances prescribed for the iterative solver. This
of accuracy was achieved for both the divergence and rotational discretizations. Figur
shows the change in the average discrete kinetic energy as a function of time when visc
is present (0.1 and 0.001 érs). Both the rotational (dashed lines) and the divergence forr
(solid lines) are shown. The lower two curves are the higher viscosity case. In both case:
divergence form tends to dissipate more kinetic energy than the rotational form in the e
stages of the evolution. It is hypothesized that this is because the divergence form con
two extra averaging operations as compared to the rotational form. Since the vorticit
initially discontinuous, these extra averaging operations introduce artificial dissipatior
the early stages of the vortex evolution. After roughly one diffusion time scale the vortic
becomes smoother and the two methods dissipate at nearly equal rates, as seen for the
viscosity case.
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FIG. 3. (a) Initial streamlines for the off-center vortex in a box. (b) Initial vorticity and mesh.

The dissipation rate (time derivative of kinetic energy) for the rotational discretization
examined in more detail in Fig. 4b. This figure shows the previous two viscosity values :
the actual derivative of kinetic energy (lines) compared to the average discrete dissipz
rate theoretically determined in the t% Sn%es, 2 Ay) which is represented by
symbols. The match between symbols and lines indicates that the theoretical analys
Section 2.2 is well founded.

4.2. Conservation of Vorticity

The discrete vorticity within each mesh cell was calculated at every time step us
Eq. (26). The average discrete vorticity was then evaluated by calculating the area weig

sum over all the individual node vorticity valu&2average= % Olmam SOM0UESA L wn. Since there
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FIG.4. (a)Kinetic energy as a function of time with kinematic viscosity of 0.1 and 0.0G1sci®olid lines are
the divergence discretization and dashed lines are the rotational discretization. (b) Dissipation rate (time deri
of kinetic energy) as a function of time for the rotational form at two different values of the kinematic viscosity (|
and 0.001 criis). Solid lines are the actual time derivative, and open circles are the calculated discrete dissip:
rate (viscosity times discrete vorticity squared).

is no flow across the domain boundaries, and the diffusive vorticity flux is zero at the donr
boundaries, this quantity should be constant, even in the presence of viscosity.

Figure 5 shows the change in the average vorticity as a function of time, for two ¢
ferent values of the viscosity (0.1 and 0.001%shand both the rotational and divergence
discretizations. The rotational form (dashed lines) conserves vorticity to seven signific

0.0154

0.01536
0.01532 _—
 oreas i o
0.01524 \

0.0152 B 2

0 2 4 6 8 10

Time

Average Vorticity

FIG.5. Average vorticity as a function of time for two different values of the viscosity. The solid lines are tl
divergence discretization, and dashed lines are the rotational discretization. The lower curve is the higher vis
case.
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figures after the solution has evolved for 10 s (200 time steps). The divergence form (s
lines) does not conserve vorticity.

Theoretically, the total enstrophy (vorticity squared) is conserved in the absence of
cosity. However, this conservation property is not captured by either the rotational or
divergence discretization methods.

4.3. Conservation of Momentum

The discrete velocity (momentum) within each mesh cell was calculated at every time -
using Eq. (55). The average discrete velocity was then evaluated by calculating the vol
weighted sum over all the individual cell velocity valuderage = y--— S Ve
Since there is no flow across the domain boundaries, and because we are using slip \
this quantity should remain constant even in the presence of viscosity.

It was found that both discretizations conserved the averagad y momentum to
machine precision. The global conservation of momentum of the rotational discretizat
was not shown analytically in the text, but was determined to be a result of the fact that
streamfunction on the boundaries does not change with time.

A more difficult test of conservation was also performed by superimposing a unifo
x velocity (5 cm/s) on the previous test problem and allowing the left boundary to be
inflow condition and the right boundary to be an outflow condition. This situation has a tii
varying streamfunction at the outflow. The divergence discretization continued to cons
X momentum to machine precision nomentum is not constant for this problem).

5. ACCURACY OF STAGGERED MESH METHODS

In this section a new approach to determining the order of accuracy of unstructu
staggered mesh discretizations is presented. This method as not based on Taylor
expansions which become unwieldy for two-dimensional unstructured meshes. Nor
based on showing that the solution lies in a function space of piecewise polynomials
certain order as is customary in finite element methods.

Instead it will be shown that discrete versions of Gauss’ Divergence Theorem and Stc
Curl Theorem can be used to obtain estimates of accuracy. A number of the interpolation:
approximations that are used in the analysis are not obviously first-order approximatit
These interpolation methods are analyzed in more detail below.

5.1. Rotational Convection Term

This section looks at approximations for the convective term normal to the fages,
u) - ns.
We begin with Stokes Theorem for an arbitrary bounded surface and a vector géjanti

/(fo)-ndA:/f-idL, (69)
S S

whereSis a surface with normal, andd Sis the boundary of the surface with unit tangentia
vectorz oriented in a counterclockwise direction around the boundary with respect to
face normal. In two dimensiong points into or out of the plane of interest.



CONSERVATION OF STAGGERED MESH SCHEMES 81

The surfaces of interest in this case are the faces of the mesh which are actually
segments in two dimensions. The boundary of this surface is the two end points or n
delimiting the line segment. So in two dimensions Stokes Theorem simplifies to

nf~/<v < A=z (frz — ), (70)
S

wherez is the vector which points out of the two-dimensional plane.
To analyze the convection term $et (U - r)w, wherer = X — Xq is the position vector
with an arbitrary origirxg. Then

N - /(V xU-Nw)dA=2z-[(U-Nwlh— U-Noln] = (U-Tw)|n2— (U-Twy)|n. (71)
S

In Cartesian tensor notation the left-hand side of this equation is written as

N /ajk(usrswk),j dA=n; /eijk[uswkr&j + rs(uswy),j] d A (72)
S S

The gradient of the position vector is the identity mat(ix,; = 8sj). So we can now write
that

—ns - /a) x UdA+n; /sijkrs(usa)k),j dA= (U-Trwy)|n2 — (U-rwz)|n1, (73)
S S

wherew, is the vorticity at the node which points out of the 2D plane. Note that this is :
exact equation. The second term cannot be simply written in vector notation so it has |
left in Cartesian tensor notation.

This equation can be used to develop discrete approximations for the rotational conve:
term,(w x U)s - Nns. Assume that the velocity fieldand the vorticity fieldo are constantalong
the face so thab x u is a constant vector on the face. This is a first-order approximati
of the convective term, and it allows us to evaluate the integrals,

face face
nodes nodes

As(w X U)f - Nf = — Z @nUn - {Xn — Xo} = — Z @nUn - {Xn — X}, (74)

whered, is the vorticity at the node which is oriented counterclockwise with respect to t
face normal. Note that the choice of the position originis arbitrary. However, it must be
the same for both of the nodes touching a particular face.

If the origin (or face position¥; is chosen to be the midpoint between the two ce
circumcenters, then Eq. (74) is the expression used in the modified rotational discretiz:
of the convective term (Section 2.2.3). On the other hand, if the face pogjtisrthosen
to be the face midpoint theq, — X; = %Afff wheret; is the tangential vector which points
toward the node in question, then

face
nodes

As(w X U)f - Nf = _EAf Z wn(Vn - ty), (75)
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which is the expression used in the standard rotational discretization of the convective
(Section 2.2.2).

The two approximations are identical when the mesh is uniform, and both expressi
are legitimate first-order accurate approximations for the rotational form of the convec
term.

5.2. Kinetic Energy

This section analyzes the approximation for the kinetic energy.
We begin with Gauss’ Divergence Theorem for an arbitrary bounded volume and ve
quantityf,

/v.de=/f.ﬁdA, (76)
R

Q

where 2 is the volume and< is the boundary of the volume with unit normal vecfor
oriented outward from the volume. We are actually interested in convex polygonal volur
where Gauss’ Theorem simplifies to

cell

faces
/v.de=Zﬁf-/fdA, (77)

Q LI

wherefy is the face normal vector pointing out of the cell in question.
To analyze the accuracy of the kinetic energy approximatiorf sefu - r)u, where
I =X — Xp is the position vector with an arbitrary origin. Then Gauss’ Theorem gives

cell
faces

/V~[(u-r)u]dV:Zﬁf-/(u-r)udA. (78)

Q 92

In Cartesian tensor notation the left-hand side of this equation is written as

Q

Q Q

The gradient of the position vector is the identity matfix; = &sj). The equation now
becomes

cell

faces
/u-udV+/r«V(uu)dV=Z/(u-r)OdA, (80)

Q Q 0%

where( is the outward normal component of the velocity at the cell faces. This is an ex
equation for polygonal volumes.

Assume that the velocity field is a constant function within the volume. This is a first-
order approximation. Then the second term is zero because the velocity is constant an
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integrals can be evaluated:

cell
1 faces

SU-UVe = > Ea(u rE8) Ay (81)
This is a first-order accurate approximation for the kinetic energy in a cell for arbitre
three-dimensional meshes.

If the mesh is two-dimensional, the face center of gravity is equal to face midpoint. If
choose the origin of the position vector to be the cell circumcententfés (x; — x$¢) =
AW, whereWg is the distance between the face and cell circumcenters. Then

cell
faces

1
éu-uVC= Z éuu\/\fAf, (82)

which states that the cell kinetic energy can be approximated by the “kinetic energy” of
normal velocity component summed over the faces. This is the approximation used ir
unstructured mesh discretizations schemes when proving conservation of kinetic enel

5.3. Interpolation of Velocity to Nodes

This section looks at the approximation for the velocity vector at the nodes. This velo
is used to calculate the convective term in the rotational discretization. High-order inter
lation of velocity to the nodes of distorted quadrilateral meshes was recently discusse
Shashkowet al.[24].

We begin with Stokes Theorem for an arbitrary bounded surface and a vector géjanti

/(fo).ndA:/fidL, (83)
S aS

whereSis a surface with normal, andd Sis the boundary of the surface with unit tangentia
vectorzoriented in a counterclockwise direction around the boundary with respectto the f
normal. In two dimensiong, points into or out of the plane of interest. Unlike Section 5.1
the polygonal region of interest it the cell faces, but the polygonal region surrounding
each node (the Voronoi dual cells). These polygons are planar and Stokes Theorem
becomes

node
faces

z./(va)dA=Zﬁf./de, (84)
S 0

wheref; is the unit normal at the face oriented in the counterclockwise direction wi
respect to the unit node in question, arid the vector pointing out of the two-dimensional
plane. Sef = (a- F)u, wheref =z x r =z x (X — Xq) is the curl of the position vector with
an arbitrary origin, and is an arbitrary nonzero constant vector:

node

faces
z-/(Vx(a-F)u)dA:Zﬁf-/(a-F)udL. (85)
1S

S
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In Cartesian tensor notation the left-hand side of this equation is written as

Zi/Eijk(as8sannerk),jdA= /8ijk55npaszizn[ukrp,j + rpuk ] d A
s S

= /[Ejki 8jsn8sZi ZnUk + EsnpBsZi Znl pwi] d A (86)
S

= /[(5kst3in — Bknbis) BsZi ZnUk + asZifswi] d A
S

= /as[uS — ZsZhUp + Zfswi] d A (87)
S

Using the fact thaa is an arbitrary vector and two dimensionality we can now write that

node
faces

/[u—z(z~u)+F(z-a))]dA=/u+Fa)n]dA= Zz></r0dL, (88)
S S 1S

where( is the component of velocity normal to the face and oriented counterclockw
with respect to the edge tangential vector. This is an exact equation for planar polygor

Assume that the velocity field is a constant vector on the polygon of interest. This is .
first-order approximation. Then the integrals can be evaluated exactly and

node
faces

VaAn=2Zx 3 {X — X}OW, (89)

wherex} is the midpoint between the two cell circumcenters. This is the edge veloc
reconstruction used in the modified rotational discretization.

On a uniform mesh the face midpoint is the same as the face circumcentef ang,} =
Dnis x z whereD,s is the distance between the node and face center. Then

node node
faces faces
VaAn=—2Zx [Zx Y DpiuWk | = > WD, (90)

which is the interpolation used in the standard rotational discretization. Note that the or
tation of the face normal and normal velocity component are now arbitrary as long as t
are consistent with each other.

5.4. Interpolation of Velocity to Cells

This section looks at the approximation for the cell velocity vector.
We begin with Gauss’ Divergence Theorem for an arbitrary bounded polyhedral volu
and a vector quantitf;

cell

faces
/v.de=Zﬁf./fdA, (91)

Q LIex:

where( is the volume and< is the boundary of the volume with unit normal vecfor
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oriented outward from the volume. Now et (a- r)u, wherer = x — Xq is the position
vector with an arbitrary andis an arbitrary nonzero constant vector. Then Gauss’ Theore
gives

cell
faces

/V~[(a~r)u]dV:Zﬁf~/(a-r)udA. (92)

S 9%

In Cartesian tensor notation the left-hand side of this equation is written as
/(asrsuj)_j dv = as/rsjuj dVv + as/rsuj,j dv. (93)
Q Q Q

The gradient of the position vector is the identity matrigx= dsj), and sinceis an arbitrary
vector,

cell

faces
/udV+/r(V~u)dV=Z/0rdA, (94)

Q Q Ay

where( is the outward normal component of the velocity at the cell faces. This is an ex
equation for polygonal volumes.

Assume that the velocity fieldis a constant function (a first-order approximation). The
the second term will be zero and the integrals can be evaluated:

cell
faces

uVe =Y arfCA;. (95)

This is the interpolation expression for the cell velocity vector used in the modified ¢
cretization schemes.

Ifthe mesh is two-dimensional then the face center of gravity is equal to face circumcet
Allow the origin of the position vector to be the cell circumcenter tHeéh= (x£€ — x$¢) =
Nt Des WhereDegt is the distance between the face and cell circumcenters. This results in
expression

cell
faces

uVe = Z un¢ Det Ay, (96)

which is a first-order approximation relating the cell velocity vector to the normal veloci
components at the faces. The orientation of the normal vector and normal velocity are
arbitrary as long as they are mutually consistent.

5.5. Numerical Tests of Accuracy

This section confirms the accuracy assessments of the preceding sections using a se
numerical tests. In each case, an exact sinusoidal function is assigned to the input vari
The exact solution is computed analytically and the approximate solution is compt
numerically. Rather than changing the mesh size, which is 6200 triangles, mesh refine
has been performed by changing the wavelength of the input variables. Small waveler
are equivalent to a coarse mesh solution.
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0.025 —j/ A
@~ | | |

0
0 005 01 015 0.2
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kinetic energy error

FIG. 6. Error in the discrete kinetic energy approximation (Eg. (82)) as a function of mesh size. First-or
accuracy is obtained.

The exact streamfunction was set t% sin(2zr Nx/100) cog2r Ny/100) onadomain
which was a 10& 100 square. Exact velocities and vorticity were then derived from th
streamfunction. The maximum velocity magnitude is unity. The average mesh spa
was calculated assuming equilateral triangles cover the domain and was found to be
The effective length of the domain is 109, whereN is a variable integer value. Larger
values ofN correspond to a coarser effective mesh. The relative mesh size is define
be AXaveragd L efiective=0.193N. So a relative mesh size of 0.2 corresponds to roughly fiv
cells per wavelength.

Figure 6 shows a plot of the rms error of the kinetic energy as a function of relative me
size when the kinetic energy is calculated using Eq. (82). The exact kinetic energy
calculated at cell circumcenters, but evaluating the exact kinetic energy at the cell cent
gravity makes only about 1% difference in the results. The average kinetic energy for
flow field is 0.25. The approximation given by Eq. (82) is clearly first-order accurate.

The approximation for the convective term is was tested by assuming exact vorti
and velocity at the mesh nodes, and using Eq. (74) to calculate the normal compone
w X U at the faces. The standard rotational discretization (Eq. (75)) is shown in Fig. 7
triangles. Itis second-order accurate which is not surprising since this equation is essen
a midpoint average when applied in two-dimensions. However, it was found that this forn
the interpolation requires a velocity interpolation which is zeroth-order accurate (see Fic

1.25 ; |

1} Q/g

0.75 -

0.25 -
0 L7 I |

0 005 01 015 02
relative mesh size

convection term error

FIG.7. Errorinthe rotational convection term (Eq. (74)) as a function of mesh size. Triangles are the stan
discretization, and circles are the modified discretization.
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relative mesh size

FIG. 8. Error in the node velocity (Eqg. (89)) as a function of mesh size. Circles are ermpmind triangles
are the error inv. The dashed lines are the standard interpolation scheme and the solid lines are the first-c
modified interpolation scheme.

if kinetic energy is to be conserved. The modified convective term, shown with circles :
described in Section 2.2.3, is first-order accurate and results in a velocity interpola
which is also first-order accurate.

Figure 8 shows the accuracy of the velocity interpolation (Eg. (89)) to the nodes. Cir
are the error in thex component of velocity and triangles are the error in yheom-
ponent. The dashed lines represent the error in the velocity interpolation required by
standard rotational form (Eq. (90)). For coarse meshes it is roughly the same as the |
ified interpolation scheme, but as the mesh is refined it does not converge to zero €
The solid lines are the modified interpolation scheme which is shown to be first-or
accurate.

The error in the approximation for the cell velocity (Eqg. (96)) is evaluated in Fig.
Again, the circles are the error in tkeomponent of velocity and the triangles are the errc
in they component. The approximation is shown to be first-order accurate.

It was also confirmed that the modified velocity approximation at the nodes and
velocity approximation at the cells are exact for constant velocity fields.

0.2
0.16
0.12

0.08

cell velocity error

0.04

0 005 01 015 0.2
relative mesh size

FIG. 9. Errorin the cell velocity (Eq. (96)) as a function of mesh size. Circles are ertgrand triangles are
the error inv.
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6. DISCUSSION

It has been shown both theoretically and numerically that unstructured staggered n
schemes can be constructed in two dimensions which conserve kinetic energy, vorticity,
momentum. Mass conservation is a trivial consequence of the mesh staggering, but 1
other conservation properties are not as immediately obvious.

The primary unknowns of the staggered mesh scheme are the velocity components
mal to cell faces, and the precise approximations that are used to approximate secol
unknowns, such as velocity vectors or kinetic energy, are critical to achieving the con
vation properties of the scheme. This paper has demonstrated both how the approy
approximations can be derived during the course of the conservation proof and also
the accuracy of the resulting approximations can be rigorously evaluated (Section 5).

In particular, it has been shown that discretizations of the rotational form of the Navit
Stokes equations can conserve kinetic energy and vorticity to machine precision. Discre
tions of the divergence form of the equations can conserve kinetic energy and momen
It was also shown that certain discretizations require nonconvergent interpolations in o
to be conservative, but that these discretizations can be modified to maintain conserv:
properties without jeopardizing the convergence.

There are many other possible staggered mesh discretizations. A number have all
been presented in the literature. The proofs presented herein do not preclude the poss
that other staggered mesh schemes are also conserving. It is anticipated that the exa
provided in Sections 2 and 3 and the tools developed in Section 5 will allow the reade
analyze the conservation properties of other staggered mesh schemes which might
particular interest.
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